Metamaterials: Making Optics from Scratch

Metamaterials are man-made, usually periodic structures. Under incident electromagnetic waves with wavelengths much larger than the constituent unit cells, these heterogeneous structures behave as homogeneous materials with effective electric permittivity (ε) and effective magnetic permeability (μ). Given desired ε and μ, inverse problem of finding the corresponding unit cell underlies a wide variety of exotic things not possible with conventional optics such as perfect lens, perfect absorber, ultra-sensitive sensors, high-precision lithography, compact antennas, optical analog computers, antimagnets, quantum levitation, invisibility cloaks, and more. However, practical realization of all these applications demands (1) bulk (large volume) and low-cost fabrication methods. Additionally, the most fascinating applications driving the field such as imaging and lithography simultaneously require (2) negative index of refraction, (3) low-loss, and (4) full isotropy. To date, theoretical structures proposed to satisfy these requirements simultaneously at (5) optical ranges, have turned out to be too complex for two-dimensional lithography. (6) Tunability and (7) broad bandwidth are other aspects to extend the functionalities of metamaterial based devices. I will present our recent efforts related to these challenges in theory, design, and manufacturing of metamaterials. I will touch upon direct laser writing, plasmonics, and several applications of metamaterials including solar cells, antennas, analog quantum simulators, and superlens.