Robotic Microphone Sensing: Design of a Robotic Platform and Algorithms for Adaptive Control of Sensing Parameters

Charles LaFont, Patricio S. La Rosa, Phani Chavali, Ed Richter, and Arye Nehorai
Department of Electrical and Systems Engineering

Abstract

In our previous undergraduate research project on "Acoustic source location using cross-correlation algorithms" we found that the performance of the 2D position estimation algorithms using two pairs of microphones depends on array variables such as the distances between the individual and pairs of microphones, and also the sampling frequency. Therefore, we propose to build a robotic microphone array with autonomous control of the array geometry for improving the localization performance of a wideband acoustic source in 2D space at a constant sampling rate. In particular, we designed two mobile robotic-platforms carrying a pair of microphones each. Each platform is capable of real-time communication between the PC and the robot microcontroller independently. We designed a control algorithm for modifying adaptively each robot position along a single axis such that the resolution for estimating the source position is improved. We tested the performance of our system using numerical examples and real experiments.

Overview

Goal:
Design and build a robotic platform equipped with a microphone array such that the array’s geometry can be controlled autonomously. Furthermore, develop algorithms and strategies to control the microphone array in order to improve localization performance.

Approach:
• Modified the existing platform of LEGO® MINDSTORM® NXT robots and securely mounted the microphone array to the robotic platform.
• Observed the system’s response to array variables and established algorithms to optimize resolution at the estimated source location.

Background:

Resolution:
The angle of estimation depends on the following equations

\[\theta = \cos^{-1} \left(\alpha \hat{h} \right) \]

Where:

\[\alpha = \frac{\lambda}{L} \]

n bounded by the range, \[\frac{1}{L} \leq \alpha \leq \frac{1}{L} \]

d if the distance between sensors pairs

\[\lambda \] is the wavelength of the acoustic waveform

\[R \] is the radial distance from the source of the array

\[L \] is the length of the linear array

\[n \] is the number of linear array elements

\[\theta \] is the angle of estimation

Increasing the Resolution at the Estimated Source

Resolution Analysis

References

• • Question 1 – Is the Microphone Array in near field or far field?
• Question 2 – Is the Microphone Array centered around the estimated source position?
• Question 3 – Are robots’ movement constrained by physical or acoustic limitations?
• Question 4 – Is the current resolution better than the previous resolution at the estimated position?